Skip to content

Define

δ=g(x+h)−g(x)
  1. Show that

    f(g(x+h))−f(g(x))h=f(g(x)+δ)−f(g(x))δg(x+h)−g(x)h
  2. Explain why

    δ→0 as h→0
  3. Hence, use first principles to prove the chain rule:

    ddxf(g(x))=f′(g(x))g′(x)