Skip to content

Let un=n2 be an explicitly defined sequence.

  1. By considering un+1−un, write un in terms of a recursive formula.

  2. Hence, or otherwise, find the value of

    1+3+5+7+…+999+1001

Note that un+1=(n+1)2


For (b), notice that

u2=1+3u3=1+3+5u4=1+3+5+7â‹®