Skip to content

The parabola with equation

y=3x2+9x−30

intersects the x-axis at the points A and B.

Let the length of AB be â„“, and the coordinates of the minimum point be (x,y).

Find the value of

16xyâ„“
Hint

Find the coordinates of A and B by solving 3x2+9x−30=0.

Solution

Parabola

To find A and B, we need the roots:

3x2+9x−30=0x2+3x−10=0(x+5)(x−2)=0x∈{−5,2}

So A(−5,0) and B(2,0) and ℓ=7.

The x coordinate of the minimum point is −5+22=−1.5.

The y coordinate is

y=3(−1.5)2+9(−1.5)−30=−36.75

So we have

16xyℓ=16(−1.5)(−36.75)(7)=6174