Skip to content

The vertex of the parabola

y=x2+bx+5

lies upon the straight line

x+y=−1

Let the two possible values of b be b1 and b2.

Find the value of

b1b22+b2b12
Hint

You should begin completing the square by writing

(x+b2)2−…
Hint

The x and y coordinate of the vertex satisfy

x+y=−1
Solution

In complete square form,

y=(x+b2)2−b24+5=(x+b2)2+20−b24

and so the vertex has coordinates

(−b2,20−b24)

These coordinates satisfy x+y=−1, so

−b2+20−b24=−1−2b+20−b2=−4b2+2b−24=0(b+6)(b−4)=0b∈{−6,4}